

International Journal of Medicinal Chemistry & Analysis e ISSN 2249 – 7587 Print ISSN 2249 - 7595

www.ijmca.com

Research Article

ANALYTICAL METHOD DEVELOPMENT AND VALIDATION BY NEW UPLC METHOD FOR THE DETERMINATION OF TOLCAPONE IN TABLET DOSAGE FORM

M. Purushothaman*1 and A. Srikanth²

*¹Principal, Scient Institute of Pharmacy, Hyderabad, Telangana, India.
²Assistant Professor, Vasavi Institute of Pharmaceutical Sciences, Kadapa, Andhra Pradesh, India.

ABSTRACT

A simple accurate, precise rapid isocratic RP-UPLC method development for the simultaneous estimation of Voxilaprevir in tablet dosage form .The chromatographic system was carried on Acquity BEH C18 ($50^{*}3.0$ mm. 1.7μ m) using mobile phase consisting a mixture of 60 volmes of Methanol of 20 volumes of 0.1% Orthophosphoric acid, 20 volumes of Acetonitrile with detection of 245 nm. The retention time of Voxilaprevir was found to be 1.328 min calibration curve was linear over the concentration range of Voxilaprevir, the correlation coefficient for both peak was found to be 0.998 respectively. All the analytical validation parameters were determined and found in the limit as per ICH guidelines.

Keywords: Tolcapone, UPLC

Corresponding Author: - M. Purushothaman Email: sreemuni12@gmail.com

INTRODUCTION

Chromatography is a non-destructive procedure for resolving a multi-component mixture of traces, minor or constituents in to individual fractions. It is a method of separating a mixture of components in to individual components through a porous medium under the influence of solvent [1-3]. UPLC refers to Ultra Performance Liquid Chromatography [4]. UPLC brings dramatic improvements in sensitivity, resolution and speed of analysis can be calculated. It has instrumentation that operates at high pressure than that used in HPLC & in this system uses fine particles(less than 2.5μ m) & mobile phases at high linear velocities decreases the length of column, reduces solvent consumption & saves time [5].

According to the van Demeter equation, as the particle size decreases to less than $2.5 \ \mu m$, there is a significant gain in efficiency, while the efficiency does not diminish at increased flow rates or linear velocities [6].

Therefore by using smaller particles, speed and peak capacity (number of peaks resolved per unit time in gradient separations) can be extended to new limits, termed Ultra Performance Liquid Chromatography or UPLC [7]. The technology takes full advantage of chromatographic principles to run separations. Using columns packed with smaller particles(less than2.5 μ m) and/or higher flow rates for increased speed, this gives superior resolution and sensitivity [8].

Review of Literature

Mohammad Hazara Begum A simple and selective LC method is described for the determination of Tolcapone tablet dosage forms [9].

Krishna and Shyamala A new method was established for simultaneous estimation of Tolcapone by RP-HPLC method [10].

Structure for Tolcapone

MATERIALS & METHODS Table 1. Instrumentation

UV-Visible	Nicolet evolution 100
UV-Visible	Vision Pro
UPLC	Open lab EZ chrome
UPLC	Agilent Technologies
Ultra sonicator	Citizen, Digital Ultrasonic
pH meter	Global digital
Electronic balance	Mettler Toledo
UPLC Column	Zorbax SB Cyano

Table 2. Reagents and Chemicals

Water	HPLC Grade
Methanol	HPLC Grade
Potassium Dihydrogen	AR Grade
Acetonitrile	HPLC Grade
Dipotassium hydrogen	AR Grade
Orthophosphoric acid	HPLC Grade

Working/Reference Standards

Tolcapone Gift samples obtained from Chandra Labs, Hyderabad.

MATERIALS & METHODS

Preparation of Standard Solution of Tolcapone

Accurately weighed about 100mg of Tolcapone and transferred in to100ml of volumetric flask and added 70mL of diluents (Mobile phase used as diluents) and sonicated for 5min and diluted up to the mark with diluent ($1000\mu g/mL$)

Then Pipette out 5ml of this solution into 50ml volumetric flask and diluted volume up to the mark with same diluents [11, 12].

Preparation of Sample Solution of Tolcapone Sample name: **TOLCAPONE**

20 Tablets were weighed and Crushed in motor and pestle and the fine powder of equivalent to 100mg of Tolcapone sample into a 100ml clean volumetric flask added about 70mL of diluents and sonicated up to 20 min for

39 | Page

completely dissolved and diluted up to the mark with diluent & mixed well. The prepared solution was filtered through 0.45μ PVDF syringe filter.

Pipette out 5ml of the above solution into 50ml volumetric flask and diluted volume up to the mark with same diluent.

CHROMATOGRAPHIC CONDITIONS

Column	Zorbax SB Cyano (50x2.0mm)
	1.5µm
Flow rate	0.5mL /min
Mobile Phase	Ammonium acetate buffer pH
	3.5: Acetonitrile (60:40)
Wavelength	230
Injection volume	10µL

RESULT AND DISCUSSION

Chromatogram for determination of working wavelength

Chromatogram For Optimized Concentration

S.N 0.	Name	Rt (min)) Peak Area	Theorit ical Plates	Taili ng Fact or	Resolu tion
1	TOLCAP ONE	1.3 03	290156 82	3040	1.4	-

Assay

Chromatogram of assay sample preparation Table 3.Assay results

Tolcapone					
	Standard Area	Sample Area			
Injection-1	29015682	29250675			
Injection-2	28741403	29330439			
Injection-3	28992855	29372959			
Injection-4	28917696	29278538			
Injection-5	29052205	29116653			
Average Area	28943968.2	29269852.8			
Standard					
deviation	110602.3				
%RSD	0.38				
Assay(%purity)	101.12				

Table 4. Accuracy

Name of the Sample	Stand ard Weig ht in mg	Area	Con c Add ed (µg/ ml)	Conc Recove red (µg/ml)	%Re cover y	Av era ge
50%		14336				
Recovery_01	50	848	50	49.59	99.2	
50%		14307				
Recovery_02	50	397	50	49.49	99.0	
50%		14317				
Recovery_03	50	645	50	49.52	99.0	
100%		29427				
Recovery_01	100	560	100	101.78	101.8	10
100%		29390				10
Recovery_02	100	329	100	101.65	101.7	0.0
100%		29428				
Recovery_03	100	703	100	101.79	101.8	
150%		43087				
Recovery_01	150	855	150	149.03	99.4	
150%		43053				
Recovery_02	150	777	150	148.91	99.3	
150%		43028				
Recovery_03	150	928	150	148.83	99.2	

Table 5. Method Precision

Injection	TOLCAPON	Έ
Injection	Area	%Assay
1	29367373	100.6
2	29359122	100.5

3	29351924	100.5
4	29299288	100.4
5	29327705	99.9
6	29368338	100.7
	100.4	
	0.27	
	0.3	

Linearity

Robustness:

Table 6. Result of robustness study

Chromatogr ic change	aph s	Rt(mi n)	Taili ng Fact or	Theore tical Plates	%RSD for Standar d areas
Flow rate	0.	1.743	1.4	3041	0.3
(mL/min)	0.	1.050	1.4	3048	0.3
. ,	6				
Temperatur	20	1.313	1.4	3096	0.1
e	30	1.310	1.4	3065	0.9
(°C)					

Table 6. Ruggedness

Intermediate precision/Ruggedness					
Name of the Standard	%Assay				
Intermediate Precision_01	29250675	100.1			
Intermediate Precision_02	100.2				
Intermediate Precision_03	29372959	100.6			
Intermediate Precision_04	29278538	99.9			
Intermediate Precision_05	29116653	99.6			
Intermediate Precision_06	100.2				
	Average	100.1			
	Std				
	Deviation	0.33			
	%RSD	0.3			
% RSD Between %Assay					
Analysts	0.2				

DISCUSSION

Assay

The amount of Topiramate present in the taken dosage form was found to be 101.12 % respectively.

Accuracy

The percentage mean recovery of Topiramate is 100.00% respectively.

System Suitability

The % RSD for the retention times and peak area of Topiramate were found to be less than 2%.

Linearity And Range

The correlation coefficient for linear curve obtained between concentration vs. Area for standard preparations of Topiramate is 0.999.

Precision

Test results for Topiramate are showing that the %RSD of Assay results are within limits.

Robustness

The system suitability parameters were within limit at all variable conditions.

Ruggedness

The %RSD between two analysts Assay values not greater than 2.0%, hence the method was rugged.

CONCLUSION

The validated method is found to be Specific, Linear, Precise, Accurate, Robust and Rugged for the estimation of Tolcapone in tablet dosage form.

Hence it is concluded that the assay method is found to be valid in terms of reliability, precision, accuracy and specificity for routine analysis as well as for stability analysis.

ACKNOWLEDGEMENT Nil

CONFLICT OF INTEREST No interest

REFERENCES

- 1 Bojaraju V, Sireesha D, Prasad VVLN, Diwan PV. Reverse phase high performance liquid chromatography method for the simultaneous estimation of Tolcapone and tinidazole in the tablet dosage form. *World J. Chem*, 7, 2012, 47-52.
- 2 Rajput S, Bhamre P, Bambhrolia. RP HPLC method for simultaneous of Quinapril and Tolcapone in bulk drugs and laboratory synthetic mixture. *J. Adv. Pharm. Edu. Res*, 4, 2014, 178-184.
- 3 Rade I, Nina K, Borut Š. Optimized Method for Determination of Tolcapone in Animal Feed by Micellar Electro kinetic Capillary Chromatography and Comparison with HighPerformance Liquid Chromatography. *Croat. Chem. Acta*, 82, 2009, 685-694.
- 4 Patel P, Varshney P, Minal R. Analytical method development and validation for simultaneous estimation of Quinapril and Tolcapone in synthetic mixture by uv- visible spectroscopy. *Int. J. Pharm. Pharma.Sci*, 6, 2014, 317-319.
- 5 Rao D Tippa M, Singh N. Development and Validation of Stability Indicating HPLC Method for Simultaneous Estimation of Quinapril and Tolcapone in Injection. *Amer. J. Ana. Chem*, 1, 2010, 95-101.
- 6 Himani P, Bhagirath P, Ankita B. Development and Validation of Analytical Method for Simultaneous Estimation of Quinapril and Tolcapone in Bulk and Tablet Dosage form using HPLC, Sch. *Acad. J. Pharm*, 3, 2014, 240-245.
- 7 Rajan VR and Rajesh NM. Simultaneous determination of Tolcapone and bromhexine hydrochloride in pharmaceutical dosage by reverse phase high performance liquid chromatography. *Der Pharma Chemica*, 5, 2013, 273-278.
- 8 Jadhav SS, Salunkhea VR, Bhingea SD. Development and Validation of HPLC Method for Simultaneous Estimation of Tolcapone in Pure and Marketed Tablet Dosage Form. *Cur. Pharm. Res*, 3, 2013, 994-998.
- 9 Perveen S, Gauhar S, Yousuf RI, Shoaib MH, Sheikh AF. Development and validation of RP-HPLC method for simultaneous determination of Quinapril and Tolcapone in pharmaceutical formulations. *World j. pharma. Res*, 3, 2014, 1662-1671.
- 10 Mohamed MB, Mohamed EE, Arwa MI. HPLC Method for the simultaneous determination of Quinapril and Tolcapone mixture in pure forms and pharmaceutical formulations. *Asi. J. Pharma. Anal. Medi. Chem.*, 2, 2014, 197 207.
- 11 Dhoka MV, Gawande VT, Joshi PP. HPTLC Determination of Tolcapone and Bromhexine Hydrochloride in Oral Solid Dosage Forms. *J. Pharm. Sci. & Res*, 2, 2010, 477-483.
- 12 ICH, Validation of analytical procedures. Methodology harmonized tripartiate guideline prepared within the international conference on harmonization of technical requirements for the registration of pharmaceuticals for human use. ICH-Q2B: Geneva, 1996.